Located just 33 light-years from Earth, the system appears to host two Earth-sized rocky planets.
A new multi-planet system has been discovered within our neighboring galaxy by astronomers in[{” attribute=””>MIT and elsewhere. It lies just 10 parsecs, or about 33 light-years, from Earth, making it one of the closest known multiplanet systems to our own.
At the heart of the system lies a small and cool M-dwarf star, named HD 260655, and astronomers have found that it hosts at least two terrestrial, Earth-sized planets. The rocky worlds have relatively tight orbits, exposing the planets to temperatures that are too high to sustain liquid surface water. Therefore, they are unlikely to be habitable.
Nevertheless, scientists are excited about this system because the proximity and brightness of its star will give them a closer look at the properties of the planets and signs of any atmosphere they might hold.
“Both planets in this system are each considered among the best targets for atmospheric study because of the brightness of their star,” says Michelle Kunimoto, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research and one of the discovery’s lead scientists. “Is there a volatile-rich atmosphere around these planets? And are there signs of water or carbon-based species? These planets are fantastic test beds for those explorations.”
The team will present its discovery on June 15, 2022, at the meeting of the American Astronomical Society in Pasadena, California. Team members at MIT include Katharine Hesse, George Ricker, Sara Seager, Avi Shporer, Roland Vanderspek, and Joel Villaseñor, along with collaborators from institutions around the world.
Data power
The new planetary system was initially identified by NASA’s Transiting Exoplanet Survey Satellite (TESS), an MIT-led mission that is designed to observe the nearest and brightest stars, and detect periodic dips in light that could signal a passing planet.
In October 2021, Kunimoto, a member of MIT’s TESS science team, was monitoring the satellite’s incoming data when she noticed a pair of periodic dips in starlight, or transits, from the star HD 260655.
She ran the detections through the mission’s science inspection pipeline, and the signals were soon classified as two TESS Objects of Interest, or TOIs — objects that are flagged as potential planets. The same signals were also found independently by the Science Processing Operations Center (SPOC), the official TESS planet search pipeline based at NASA Ames. Scientists typically plan to follow up with other telescopes to confirm that the objects are indeed planets.
The process of classifying and subsequently confirming new planets can often take several years. For HD 260655, that process was shortened significantly with the help of archival data.
Soon after Kunimoto identified the two potential planets around HD 260655, Shporer looked to see whether the star was observed previously by other telescopes. As luck would have it, HD 260655 was listed in a survey of stars taken by the High Resolution Echelle Spectrometer (HIRES), an instrument that operates as part of the Keck Observatory in Hawaii. HIRES had been monitoring the star, along with a host of other stars, since 1998, and the researchers were able to access the survey’s publicly available data.
HD 260655 was also listed as part of another independent survey by CARMENES, an instrument that operates as part of the Calar Alto Observatory in Spain. As these data were private, the team reached out to members of both HIRES and CARMENES with the goal of combining their data power.
“These negotiations are sometimes quite delicate,” Shporer notes. “Luckily, the teams agreed to work together. This human interaction is almost as important in getting the data [as the actual observations]. “
pull planets
Ultimately, this collaborative effort quickly confirmed the presence of two planets around HD 260655 in about six months.
To confirm that the signals from TESS were indeed from two orbiting planets, the researchers looked at data from both the HIRES and CARMENES of the star. Both surveys measure a star’s gravitational oscillation, also known as its radial velocity.
“Every planet orbiting a star will have a small gravitational force on its star,” Kunimoto explains. “What we’re looking for is any slight movement of this star that could indicate a planetary-mass object pulling it in.”
From both sets of archival data, the researchers found statistically significant signs that the signals detected by TESS were indeed two orbiting planets.
“Then we knew we had something very exciting,” says Sporer.
The team then looked closely at the TESS data to determine characteristics of both planets, including their orbital period and size. They determined that the inner planet, nicknamed HD 260655b, orbits the star every 2.8 days and is about 1.2 times the size of Earth. The second exoplanet, HD 260655c, rotates every 5.7 days and is 1.5 times as massive as Earth.
From radial velocity data from HIRES and CARMENES, the researchers were able to calculate the mass of the planets, which is directly related to the amplitude with which each planet drags on its star. They found that the inner planet has a mass twice the mass of Earth, while the outer planet has a mass of about three Earth masses. From its size and mass, the team estimated the density of each planet. The smaller inner planet is slightly more dense than Earth, while the larger outer planet is slightly less dense. Both planets, depending on their densities, are likely terrestrial or rocky in composition.
The researchers also estimated, based on their short orbits, that the planet’s inner surface is a roasting of 710 K (818 degrees).[{” attribute=””>Fahrenheit), while the outer planet is around 560 °K (548 °F).
“We consider that range outside the habitable zone, too hot for liquid water to exist on the surface,” Kunimoto says.
“But there might be more planets in the system,” Shporer adds. “There are many multiplanet systems hosting five or six planets, especially around small stars like this one. Hopefully, we will find more, and one might be in the habitable zone. That’s optimistic thinking.”
This research was supported, in part, by NASA, the Max-Planck-Gesellschaft, the Consejo Superior de Investigaciones Científicas, the Ministerio de Economía y Competitividad, and the European Regional Development Fund.
More Stories
In Greece Porsche 911 50th Anniversary – How much does it cost?
PS Plus: With a free Harry Potter game, the new season begins on the service
Sony set to unveil PS5 Pro before holiday season – Playstation